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Abstract: Automatic and reliable segmentation of subcortical structures is an important but difficult
task in quantitative brain image analysis. Multi-atlas based segmentation methods have attracted great
interest due to their promising performance. Under the multi-atlas based segmentation framework,
using deformation fields generated for registering atlas images onto a target image to be segmented,
labels of the atlases are first propagated to the target image space and then fused to get the target
image segmentation based on a label fusion strategy. While many label fusion strategies have been
developed, most of these methods adopt predefined weighting models that are not necessarily optimal.
In this study, we propose a novel local label learning strategy to estimate the target image’s segmenta-
tion label using statistical machine learning techniques. In particular, we use a L1-regularized support
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vector machine (SVM) with a k nearest neighbor (kNN) based training sample selection strategy
to learn a classifier for each of the target image voxel from its neighboring voxels in the atlases based
on both image intensity and texture features. Our method has produced segmentation results
consistently better than state-of-the-art label fusion methods in validation experiments on hippocampal
segmentation of over 100 MR images obtained from publicly available and in-house datasets.
Volumetric analysis has also demonstrated the capability of our method in detecting hippocampal
volume changes due to Alzheimer’s disease. Hum Brain Mapp 35:2674–2697, 2014. VC 2013 Wiley Period-
icals, Inc.
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INTRODUCTION

Subcortical structure segmentation from magnetic reso-
nance (MR) brain images is of great importance in a vari-
ety of neuroimaging studies, such as the brain anatomy
and function [Mazziotta et al., 1991], the brain develop-
ment, and brain disorders [Ostby et al., 2009; Sowell et al.,
2002]. However, it is a challenging task to achieve auto-
matic segmentation of subcortical structures from MR
images due to a high degree of overlap between their
intensity distributions and blurred boundaries between
subcortical regions and background [Fischl et al., 2002; Tu
et al., 2008].

Among existing medical image segmentation techniques,
atlas-based methods have attracted great attention par-
tially because spatial positions of anatomical structures are
relatively stable across subjects. Given a target image to be
segmented, the atlas-based methods spatially register one
atlas image to the target image so that its associated atlas
label is propagated with the obtained deformation field to
the target image space [Bajcsy et al., 1983; Collins et al.,
1995; Gee et al., 1993; Iosifescu et al., 1997]. The perform-
ance of such methods hinges on image registration accu-
racy and anatomical differences between the target and
atlas images.

It has been proposed to select the most similar atlas to
the target image based on either image similarity [Aljabar
et al., 2009] or demographic information [Hajnal et al.,
2007] in the atlas based image segmentation with multiple
available atlases for alleviating the impact of anatomical
variability. Although such strategies have been shown to
be able to improve image segmentation performance
[Avants et al., 2010; Wu et al., 2007], they might not work
effectively if the target image is much different from all
available atlases. Multiple atlases can also be used to
generate a probability map as a prior information in
statistical image segmentation algorithms [Ashburner and
Friston, 2005; Collins et al., 1999; Fischl et al., 2004; Han
and Fischl, 2007; Leventon et al., 2000; Marroquin et al.,
2003; Pohl et al., 2006a; Twining et al., 2005; Yeo et al.,
2008].

Recent studies have demonstrated that multi-atlas based
segmentation methods can achieve robust performance by

fusing propagated labels of multiple atlases in the target
image space [Artaechevarria et al., 2009; Heckemann et al.,
2006; Khan et al., 2011; Rohlfing and Maurer, 2007; Rohlf-
ing et al., 2004b; Sdika, 2010; Warfield et al., 2004]. A
multi-atlas based segmentation algorithm typically consists
of two steps: (1) registering each atlas image to the target
image so that the atlas label is propagated to the target
image space, and (2) fusing all the propagated atlas labels
to generate a segmentation result of the target image. For
achieving improved multi-atlas based image segmentation
performance, besides optimizing the image registration
[Heckemann et al., 2010; Jia et al., 2012; Khan et al., 2008,
2009], many methods have been proposed to improve the
label fusion. Among the existing label fusion methods,
probably the most simple and intuitive one is majority vot-
ing [Heckemann et al., 2006; Rohlfing et al., 2004a; Rohlf-
ing and Maurer, 2007]. Improved label fusion strategies
have been proposed to take into account local or global
similarity between the target and atlas images in a
weighted linear combination framework, such as image
similarity based atlas weighting [Artaechevarria et al.,
2008, 2009; Isgum et al., 2009; Sabuncu et al., 2010], seg-
mentation performance based atlas weighting [Asman and
Landman, 2011; Rohlfing et al., 2004b; Warfield et al.,
2004], and regression based atlas weighting [Khan et al.,
2011; Wang et al., 2011b]. Particularly, it has been demon-
strated that linear combination models with their weights
derived from patch-based image similarity measures are
robust in several image segmentation studies [Coupe
et al., 2011; Rousseau et al., 2011]. To relieve the adverse
effects of atlases that are much different from the target
image and reduce the computation cost, an atlas selection
procedure, a special case of atlas weighting with binary
weights, can also be adopted in multi-atlas based segmen-
tation algorithms [Aljabar et al., 2009; Langerak et al.,
2010; Leung et al., 2010; Lotjonen et al., 2010; van Rikxoort
et al., 2010].

Along with the multi-atlas based methods for subcorti-
cal structure segmentation, supervised learning based
image segmentation methods have been proposed to build
classifiers based on the information of multiple atlases.
Such supervised learning based segmentation methods
first extract image features with information often richer
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than intensity information alone, and then construct a clas-
sification model based on the image features using super-
vised learning algorithms, such as SVMs [Morra et al.,
2010; Powell et al., 2008], boosting [Morra et al., 2010], and
artificial neural networks [Magnotta et al., 1999; Pierson
et al., 2002; Powell et al., 2008; Spinks et al., 2002]. Since
subcortical structures often exhibit complex appearance
patterns, such as similar appearance of different subcorti-
cal regions and distinct appearance in different parts of
the same subcortical region, one single classification model
cannot successfully capture subcortical structures’ complex
appearance patterns in different locations, despite efforts
to address this problem by combining shape or context
information [Morra et al., 2009b; Tu et al., 2008; Tu and
Toga, 2007; Wang et al., 2011a].

In this article, a novel local label learning (LLL) frame-
work is proposed for image segmentation based on multi-
ple atlases spatially registered to the target image using a
pairwise non-linear image registration algorithm. In par-
ticular, for each of the target image voxels, a classification
model for segmentation is learned from voxels of atlas
images within a spatial neighborhood of the voxel consid-
ered. The classification model is learned using a hybrid of
SVM and kNN (k nearest neighbor classification) [Zhang
et al., 2006], which builds a SVM classifier for the voxel
considered based on its k nearest positive and negative
training samples. For reducing the computational cost, a
probabilistic voting of the labels of registered atlases is
adopted to identify image voxels with 100% certainty,
and the classification is applied to those image voxels
with uncertain probabilistic label voting. Our algorithm
for segmenting hippocampus has been validated on 117
MR images of different scanning field strengths (1.5 T
and 3.0 T) and different diagnostic groups of Alzheimer’s
disease (AD) as well as MR images of different scanning
field strengths (1.5 T and 3.0 T) of 50 epilepsy patients
and normal subjects. The experimental results indicated
that our method could achieve competitive performance
compared with state-of-the-art multi-atlas based segmen-
tation methods. Preliminary results of this study have
been reported in [Hao et al., 2012]. The software of our
method will be made publicly available at http://
www.nitrc.org, and imaging data along with the manual
segmentation results will be distributed with the
software.

MATERIALS AND METHODS

Subjects and Imaging

Some of the image data used in the preparation of this
article were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (adni.loni.ucla.edu).
The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of
California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Can-
ada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research, approximately
200 cognitively normal older individuals to be followed
for 3 years, 400 people with MCI to be followed for
3 years, and 200 people with early AD to be followed for
2 years. For up-to-date information, see www.adni-
info.org.

From the ADNI database, 30 subjects were randomly
selected and they were equally distributed in three diag-
nostic groups, i.e., 10 patients with Alzheimer’s disease
(AD), 10 subjects with mild cognitive impairment (MCI),
and 10 normal control people (NC). For each of them, both
1.5 T and 3.0 T T1-weighted MR images were down-
loaded. The dataset of 1.5 T images is referred to as Data-
set A, and the dataset of 3.0 T images is referred to as
Dataset B. For all the images, corrections including Grad-
Warp [Jovicich et al., 2006], B1-correction [Jack et al.,
2008], “N3” bias field correction [Sled et al., 1998] and geo-
metrical scaling [Jack et al., 2008], were performed by
ADNI.

An in-house dataset, referred to as Dataset C, consisting
of Sagittal T1-weighted MR images of 57 subjects (20 NC,
15 MCI, and 22 AD), was acquired using a 3.0 T Siemens
scanner with a magnetization prepared rapid gradient
echo (MP-RAGE) sequence (TR/TE 5 2,000/2.6 ms;
FA 5 9�; slice thickness 5 1 mm, no gap). “N3” bias field
correction [Sled et al., 1998] was applied to the images
for reducing intensity inhomogeneity. These subjects’ clini-
cal scores and demographic information are shown in
Table I.

Manual segmentation of these images was performed by
two trained experts, one for Dataset A and Dataset B, and
the other for Dataset C. The manual delineation was per-
formed on coronal slices using ITK-snap [Mazziotta et al.,
1991] following two protocols, one for the delineation of
hippocampal head and body [Ostby et al., 2009] and the
other for the delineation of the hippocampal tail [Sowell
et al., 2002]. Ten images were randomly selected for
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accessing the intra-rater and inter-rater reliability. In terms
of Dice index (see definition in following sections), the
intra-rater reliability was 0.91 for both experts and the
inter-rater variability was 0.89, similar to those reported in
[Morra et al., 2009b; Wang et al., 2011a].

Another set of MR images of epilepsy patients and nor-
mal subjects were obtained from a publicly available data-
set (http://www.radiologyresearch.org/HippocampusSeg
mentationDatabase/) [Jafari-Khouzani et al., 2011]. This
dataset consisted of T1 weighted MR images of 50 sub-
jects, including 40 epileptic (13 males, 27 females; age
range 15–64) and 10 nonepileptic subjects (five males, five
females; age range 19–54). Images were acquired using
two different MR imaging systems with different field
strengths (30 1.5 T images with pixel size 0.78 3 0.78 3 2.00
mm3, and 20 3.0 T images with pixel size 0.39 3 0.39 3 2.00
mm3). Twenty-five images were selected for training and
were provided with hippocampal labels. The other 25
images were provided without labels for testing algo-
rithms [Jafari-Khouzani et al., 2011].

Multi-Atlas Based Image Segmentation

Given a target image I to be segmented and N atlases
~Ai5 ~I i; ~Li

� �
; i51; . . . ;N, where ~I i is an image and ~Li is its

associated segmentation label with value 11 indicating
foreground and 21 indicating background, a multi-atlas
based image segmentation algorithm first spatially regis-
ters the atlas images to the target image, then propagates
the atlas labels to the target image space using the
obtained deformation fields, and finally fuses the propa-
gated atlas labels to generate a segmentation result using a
specific label fusion strategy. For simplicity, we use
Ai5 Ii;Lið Þ to denote an atlas that has been spatially regis-
tered to the target image. The label of a target image voxel
x can be computed as

L
_

xð Þ5 arg max
i2 21;11f g

XN

i51
wi xð Þp L xð Þ5ljLið Þ; (1)

where wi xð Þ is a weight assigned to the atlas label Li at
position x and l indicates the possible labels 21 or 11,

p L xð Þ5ljLið Þ is the probability that L belongs to label l at x
given an atlas label Li. One of the frequently used proba-
bility estimations of p L xð Þ5ljLið Þ, can be formulated as

p L xð Þ5ljLið Þ5
1; if Li xð Þ5l

0; otherwise :

(
(2)

Many label fusion methods have been proposed and the
major difference among them lies in how to define the
weight wi xð Þ. Depending on the weighting scheme used,
label fusion methods typically fall into one of two catego-
ries: weights computed based solely on atlas labels and
weights computed based on both atlas labels and image
appearance.

The methods in the first category utilize the atlas labels
solely to estimate the final segmentation. The simplest
method is majority voting [Heckemann et al., 2006; Rohlf-
ing and Maurer, 2007], which assumes that each atlas con-
tributes equally to the image segmentation. The majority
voting typically results in a binary label for classification
[Kittler et al., 1998]. In this article, we refer to a summation
of the individual labels, encoded by a probabilistic value,
as probabilistic voting, which can be thresholded with a
value, e.g., 0.5, to get a binary label. For image segmenta-
tion, with N atlases, the weights used in the probabilistic
voting can be formulated as

wi xð Þ51=N: (3)

Shape-based averaging can also be viewed as a special
case of probabilistic voting in that the atlas labels are
transformed into Euclidean distance maps [Rohlfing and
Maurer, 2007], which is similar to majority voting with a
continuous probability estimation [Pohl et al., 2006b].

Another representative method in the first category is
simultaneous truth and performance level estimation (STA-
PLE) which was proposed to fuse segmentation results of
multiple raters by simultaneously estimating their perform-
ance so that different weights can be assigned to raters
according to their performance in label fusion [Rohlfing
et al., 2004b; Warfield et al., 2004]. Although STAPLE has

TABLE I. Demographic data and clinical scores of the subjects

ADNI (dataset A and B) In-house (dataset C)

NC MCI AD NC MCI AD

Subject Size 10 10 10 20 15 22
Age (years) 73.2(6.3) 73.5 (9.6) 73.1(7.0) 65.4(8.3) 71.5(9.2) 65.1(7.3)
Males/Females 5/5 5/5 5/5 7/13 7/8 12/10
MMSE 29.3(1.3) 26.1(1.8) 22.2(1.9) 28.3(1.5) 22.3(3.8) 9.1(6.5)
Manufacturer (SIEMENS/GE) 6/4 7/3 6/4 20/0 15/0 22/0

Dataset A and Dataset B are the ADNI subjects’ 1.5 T and 3.0 T scans, respectively.
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achieved great success in characterizing the performance of
the raters, it sometimes yields worse results than majority
voting for the multi-atlas based image segmentation [Artae-
chevarria et al., 2009; Khan et al., 2011; Langerak et al.,
2010]. The performance of STAPLE might be improved by
making it spatially adaptive [Asman and Landman, 2011],
introducing more variables to characterize the label per-
formance [Asman and Landman, 2011; Gering et al., 2001],
or combining it with atlas selection strategy [Langerak
et al., 2010]. However, all of these methods ignore the atlas
image’s appearance information that might be useful for
achieving robust image segmentation.

The methods in the second category utilize both image
appearance and label information of the atlases to fuse
multiple labels. Specifically, a similarity measure of image
appearance between the target and atlas images is typi-
cally used to determine weights for different atlases. The
image appearance similarity can be measured globally for
the whole image or locally for each voxel separately
[Artaechevarria et al., 2009; Sabuncu et al., 2010; Wang
et al., 2011b]. The global similarity based weighting strat-
egy can be seen as a generalized version of majority voting
or STAPLE, where the contribution of each atlas label to
the final segmentation is proportional to its global image
appearance similarity to the target image [Artaechevarria
et al., 2009]. The local similarity based weighting methods
adaptively assign a weight to each atlas voxel separately.
A Gaussian weighting model (LWGU) with summed
square distance (SSD) has been proposed in [Sabuncu
et al., 2010; Wang et al., 2011b], and the local weight can
be computed for each atlas voxel by

wi xð Þ5exp 2
X

y2N xð Þ
jjIi yð Þ2I yð Þjj22

rx

 !
; (4)

where N xð Þ defines a spatial neighborhood of voxel x, jj � jj2
is the Euclidean distance between intensities of Ii yð Þ and
I yð Þ, and rx is a parameter of the weighting model. Simi-
larly, a spatially adaptive weight can be computed using
the inverse weighting model (LWINV) as defined in
[Artaechevarria et al., 2009; Wang et al., 2011b] by

wi xð Þ5
X

y2N xð Þjj Ii yð Þ2I yð Þjj22
h ip

; (5)

where p is a parameter of the weighting model with a
negative value.

The label fusion can also be achieved based on a patch
based weighting scheme, referred to as nonlocal patch
based fusion (NLP), as defined in [Coupe et al., 2011;
Rousseau et al., 2011] by

L̂ xð Þ5

XN

S51

X
j2V

w x; xs;j

� �
� L xs;j

� �
XN

S51

X
j2V

w x; xs;j

� � (6)

where L xs;j

� �
is the label of voxel xs;j at location j in atlas s,

V is a search volume, and w x; xs;j

� �
is the weight assigned

to L xs;j

� �
based on the similarity between the patches sur-

rounding x and xs;j. In particular, the weight w x; xs;j

� �
can

be computed as [Coupe et al., 2011]:

w x; xs;j

� �
5 e

2
jj p xð Þ2p xs;j

� �
jj22

rx if ss > th

0 else

8>><
>>:

where P �ð Þ is a cubic patch centered at the voxel consid-
ered, and jj � jj2 is L2 norm computed between each inten-
sity of the elements of the patches P xð Þ and P xs;j

� �
, ss is a

structure similarity measure between the two patches
[Coupe et al., 2011], and th is a threshold. A similar strat-
egy has been used for incorporating image intensity infor-
mation in STAPLE [Asman and Landman, 2012].

Recently, a generative model employing a nonparamet-
ric estimator has been proposed for estimating the poste-
rior label probability of the target image [Sabuncu et al.,
2010]. Within this framework, several existing label fusion
methods, such as majority voting, global similarity based
weighing and LWGU, can be treated as one of its special
cases.

Most of the existing image similarity based local weight-
ing methods explicitly specify a weighting scheme that is
not necessarily the best fit for the label fusion problem. To
automate the determination of atlas weights for label
fusion, a regularized linear model of propagated segmen-
tation labels weighted by image appearance difference
between the target and atlas images has been built by least
square fitting [Khan et al., 2011]. Correlations between
results produced by different atlases have also been taken
into account for label fusion [Wang et al., 2011b].

Local Label Learning Method (LLL)

As schematically illustrated in Figure 1, the local label
learning (LLL), for directly learning a classifier for each
voxel of the target image to be segmented, consists of can-
didate training set construction, feature extraction, and
local SVM classification.

Candidate training set construction

To learn an image segmentation classifier for each voxel
of the target image, a set of voxel-wise training samples is
identified from the registered atlases. Since the image
registration of atlases cannot achieve perfect alignment of
all image voxels across images, it is not appropriate to
directly take the corresponding voxel of the voxel consid-
ered in each atlas as a training sample. To achieve better
correspondence between voxels of the target and atlas
images, a local search strategy can be used to find the best
match in each atlas for the target image voxels [Wang
et al., 2011b]. However, the local searching for the best
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match is computationally expensive if not impossible.
Such a strategy also limits the number of training
samples obtained no more than the number of atlases,
which may require a special treatment for learning algo-
rithms in studies with a limited number of atlases [Wang
et al., 2011b].

Instead of obtaining only one sample from each atlas,
we adopt a local patch based method [Coupe et al., 2011;
Rousseau et al., 2011]. Given one voxel x of the target
image, as illustrated in Figure 1, voxels in its neighbor-
hood N xð Þ of all atlases are used as training samples. Par-
ticularly, we take a 2r11ð Þ3 2r11ð Þ3 2r11ð Þ cube-shaped

neighborhood and get N � 2r11ð Þ3 candidate training sam-

ples ~f i;j; li;j

� �
ji51; . . . ;N; j 2 N xð Þ

n o
from N atlases, where

r is the neighborhood radius, ~f i;j is a feature vector

extracted from voxel j of the ith atlas by the feature extrac-
tion method to be described next, and each candidate
training sample’s segmentation label is li;j 2 11;21f g,
same to its atlas label. When r50, only the corresponding
voxel in each atlas is used as a training sample.

The candidate training samples from a local patch have
different degrees of similarity to the target voxel to be
labeled. A hybrid of SVM and kNN can identify balanced
positive and negative training samples, the most similar to

the target image voxel considered, and learn an effective
and efficient SVM classifier based on the balanced training
samples. It is worth noting that unlike the affine image
registration used in [Coupe et al., 2011; Rousseau et al.,
2011], we adopt a non-rigid image registration algorithm
for registering the target and atlas images so that a smaller
neighborhood can be used in our algorithm, which makes
the trained classifier more resistant to noise/outliers.

Feature extraction

As demonstrated in several subcortical segmentation
studies [Fischl et al., 2002; Tu et al., 2008], image intensity
information solely is not good enough for distinguishing
different subcortical structures since most subcortical
structures share similar intensity patterns in MR images.
To address such a problem, in the learning based segmen-
tation methods, more discriminative features are often
extracted from MR images [Morra et al., 2010; Powell
et al., 2008; Tu et al., 2008]. However, such a strategy has
not been widely employed for label fusion in atlas-based
segmentation studies.

In our method, a set of features is extracted for capturing
texture information of subcortical structures [Toriwaki and
Yoshida, 2009]. The features extracted for each voxel include

Figure 1.

The framework of local label learning (LLL) method, consisting of steps: (1) candidate training

set construction, (2) feature extraction, and (3) local SVM classification. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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intensities in its neighborhood of size 73737ð Þ, and outputs
of the first order difference filters (FODs), the second order
difference filters (SODs), 3D Hyperplane filters, 3D Sobel fil-
ters, Laplacian filters, and Range difference filters [Toriwaki
and Yoshida, 2009]. All of them are concatenated to form a
feature vector~f with 379 elements.

Given an image I, FODs and SODs, capable of detecting
intensity change along a line segment, can be computed as
I x1r cos u sin /; y1r sin u sin /; z1r cos /ð Þ2I x2r cos u sin /;ð
y2r sin u sin /; z2r cos /Þ and I x1r cos u sin /; y1r sin uð
sin /; z1r cos /Þ1 I x2r cos u sin /; y2r sin u sin /; z2r cos /ð Þ
22I x; y; zð Þ, respectively, where I x; y; zð Þ is I’s intensity at
voxel x; y; zð Þ; u and u are two rotation angles, r is the dis-
tance from x; y; zð Þ to the voxels considered. In this study,
r51; u 2 0;p=4; p=2; 3p=4f g, and / 2 0;p=4; p=2f g were
used for the first and second order difference filters.

Three-dimensional Hyperplane filters and 3D Sobel fil-
ters are extensions of the first order difference filters and
can be formulated as Fijk5P � Ii112Ii21ð Þ, where P is a 333

kernel operator (for Hyperplane filters P5

1 1 1

1 1 1

1 1 1

2
664

3
775,

while for 3D Sobel filters P5

1 2 1

2 3 2

1 2 1

2
664

3
775), � denotes convo-

lution operation, Ii21 and Ii11 denote two planes along x
axes of image I at position i21 and i11. It is worth noting
that the above two filters are directional. Filters along
directions of y and z can be similarly implemented.

Laplacian filters are isotropic and can be treated as exten-
sions of the second order difference filters. They can be for-

mulated as F x;y;zð Þ5
X

l;m;n2N x;y;zð Þ=ðx;y;zÞ I l;m;nð Þ2I x; y; zð Þð Þ
where N x; y; zð Þ= x; y; zð Þ denotes voxels in the neighborhood

of voxel x; y; zð Þ excluding itself. Depending on the number

of voxels used, Laplacian filter is also referred to as
p-neighbor Laplacian.In this study, three filters, namely

62neighbor Laplacian, 182neighbor Laplacian and 26-

neighbor Laplacian, implemented in the 3 3 3 3 3 neighbor-

hood were used for feature extraction.
The range difference filter computes the difference

between maximal and minimal values in a given neighbor-
hood of each voxel and can be formulated as F x;y;zð Þ5max

IN x;y;zð Þ
� �

2min IN x;y;zð Þ
� �

, where N x; y; zð Þ denotes voxels in
a given neighborhood of x; y; zð Þ, max �ð Þ and min �ð Þ get

Figure 2.

Feature extraction for a randomly selected image by applying filters with different parameters. The

displayed filtering outputs are scaled to have the same intensity range as the intensity indicator.
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the maximal value and the minimal value of the input,

respectively. Three neighborhood sizes, including 7-

neighbor, 19-neighbor, and 27-neighbor, extracted in the

33333 neighborhood were used in this study for extract-

ing features. Some filtering outputs of a randomly selected

image are shown in Figure 2.
In this study, to account for difference of intensity distri-

butions across atlases and the target image, before feature
extraction for voxel v, we normalized the intensities of
voxels in a cube patch centered atv with a neighborhood
size of 73737. Particularly, mean value and standard
deviation of intensities of all voxels in the cube patch were
first computed, and then the intensity of each voxel in this
cube patch was subtracted by the mean value and divided
by the standard deviation.

Local SVM classification

Once the image features are extracted for both the target
image voxel v and its corresponding candidate training
samples, including np positive samples and nn negative
samples, a kNN strategy based SVM classification algo-
rithm is adopted to build a classifier [Zhang et al., 2006].

In particular, approximately k nearest neighboring sam-
ples of the target image voxel are identified from the can-
didate training samples based on Euclidean distances
between their feature vectors and the target image voxel’s
feature vector, including kpos 5min floor k

2

� �
;np

� �
positive

nearest neighboring samples and kn2g5min floor k
2

� �
; nn

� �
negative nearest neighboring samples, constituting a bal-
anced training set, as illustrated by samples in the dashed
black circle in Figure 1.

A SVM classifier is built on the identified training set
and then used to classify the target voxelv. As the features
might contain redundant information, we adopt an L1-
regularized SVM method for obtaining a sparse model
[Yuan et al., 2010]. The L1-regularized SVM classifier can
be obtained by solving an optimization problem:

min~wjj~wjj11C
X

i;j
max 0; 12li;j~w

T~f i;j

� �� �2
; (7)

where jj � jj1 donates L1 norm.
The L1-regularized SVM optimization problem can be

solved by a coordinate descent method [Yuan et al., 2010]. In
particular, our algorithm implementation used a publicly
available software package LIBLINEAR (www.csie.ntu.e-
du.tw/�cjlin/liblinear/) [Fan et al., 2008]. The L1-regularized
SVM often produces a sparse solution of ~w, and nonzero ele-
ments of ~w are informative features selected. Once we get ~w,
the label of target image voxel x can be estimated as

L̂ xð Þ5sgn ~wT~f
� �

: (8)

The LLL algorithm is summarized as

LLL ALGORITHM
Inputs: One target image I to be segmented, N atlases

Ai5 Ii; Lið Þ; i51; . . . ; N that have been spatially regis-

tered to the target image space, where Ii is the ith atlas
image and Li is its associated segmentation label.

Output: Label map L of the target image I.
Begin:
For each voxel x in the target image

� Obtain N � 2r11ð Þ3 candidate training samples and
compute their image feature vectors.
� Find Kpos positive training samples and Kneg negative

training samples respectively from the candidate
training set based on Euclidean distances between fea-
ture vectors of the testing and training samples.
� Training a classifier based on the selected Kpos 1Kneg

training samples using L1-regularized SVM with a lin-
ear kernel.
� Estimate label L xð Þ of the target image voxel x by

applying the SVM classifier to its feature vector.

End for
End

Segmentation of Hippocampus

All MR images were registered to the MNI152 space
using affine registration, and these aligned images were
resampled to have a voxel size of 1 3 1 3 1 mm 3. For each
of the left and right hippocampi, a bounding box was gen-
erated to cover the whole hippocampus in the MNI152
space following the procedure described in [Morra et al.,
2009b]. In particular, all the atlases were scanned to find
the minimum and maximum x, y, z positions of the hippo-
campus and the size of seven voxels was added in each
direction to cover the hippocampus of unseen testing
images.

Atlas Selection and Image Registration

For segmenting a target image, an atlas selection strat-
egy was adopted to select the most similar atlases. The
similarity between the target image and an atlas image
was evaluated based on normalized mutual information
(NMI) of image intensities within the bounding box [Alja-
bar et al., 2009]. In this study, we chose the top 20 most
similar atlases [Morra et al., 2009b]. All the selected atlas
images were independently registered to the target image
using a nonlinear, cross-correlation-driven image registra-
tion algorithm, namely ANTs (version 1.9x) [Avants
et al., 2008], with the command: ANTS 3 -m CC [target.nii,
source.nii, 1, 2] –i 100x100x10 –o output.nii -t SyN[0.25] –r
Gauss[3,0].

Initial Segmentation With Probabilistic Voting

To reduce the computation cost, the probabilistic voting
strategy was adopted to get an initial segmentation result
of the target image. For each voxel of the target image, we
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got the probability value of the voxel belonging to the hip-
pocampus. The segmentation result of voxels with 100%
certainty (probability value of 1 or 0) was directly taken as
the final segmentation result. Then the local label learning
focused on voxels with probability values greater than 0
and smaller than 1.

Parameter Tuning

The parameters of our algorithm were determined
empirically based on Dataset A, including the neighbor-
hood radius r for obtaining the candidate training samples
and the parameter k for kNN. A leave-one-out validation
was adopted to tune the parameters for achieving the opti-
mal segmentation performance. Particularly, the searching
range of r was {0, 1, 2, 3}, k was selected from {200, 300,
400, 500}. In particular, when r50, all available training
samples were used in the SVM classifier training. We used
the default value for parameter C of the L1-regulzaried
SVM as recommended in [Fan et al., 2008]. We also per-
formed the segmentation by replacing the SVM classifier
with a kNN classifier. The performance of the a kNN classi-
fier based segmentation was evaluated with k selected
from {1, 5, 10, 20, 50, 100, 150, 200, 250, 300, 400, 500}.

Feature Selection Analysis

To investigate which features are informative for the
classification, we identified features most frequently
selected by SVM classifiers for the segmentation of right
hippocampus for images of Dataset A. As classifiers at dif-
ferent locations of the hippocampal structure may select
different features, we focused on classifiers for voxels
located at the boundary of the hippocampus. In particular,
for each image of Dataset A, we first identified the bound-
ary of its hippocampal structure, then found the features
selected by the classifiers, i.e., those corresponding to non-
zero elements of ~w, for different boundary voxels, and
finally we obtained the frequency of features selected by
different classifiers. The mean of frequencies of features
selected for the segmentation of images of Dataset A was
also obtained.

Comparison With State-of-the-Art

Label Fusion Methods

The proposed algorithm was compared with state of the
art label fusion algorithms, including majority voting,
STAPLE, LWGU [Sabuncu et al., 2010], LWINV [Wang
et al., 2011b], and NLP [Coupe et al., 2011; Rousseau et al.,
2011]. The parameters of LWGU, LWINV, and NLP were
tuned based on Dataset A using cross-validation. For
LWGU, patch radius r and rx need to be determined. In
particular, rx was adaptively set to min y2N xð Þ |I yð Þ2f
Ii yð Þ|21eg, i51; . . . ;N, and e was set to 1e-20 for numerical
stability. The optimal value of r was 1, selected from {1, 2,
3}. For LWINV’s parameters, including p and patch radius r,

the optimal value of p was 21, selected from 23;22;21f g,
while the optimal value of r was 1, selected from {1, 2 3}.
For NLP, there are three parameters, including patch radius
r, search volume V, and rx. The optimal value of r was 1,
selected from {1, 2, 3}. The optimal value of V was 33333,
selected from {33333, 53535; 73737}, rxwas adaptively
set to min y2N xð Þ |P xð Þ2P xs;j

� �
|2

21e
� �

, and e was set to
1e-20 for numerical stability. The NLP label fusion method
was performed based on atlases nonlinearly registered to
the target image space, instead of those registered with
affine transformation [Coupe et al., 2011; Rousseau et al.,
2011].

Validation of the Segmentation

Performance Across Different Datasets

We evaluated our method across different datasets. In par-
ticular, we segmented each image of Dataset A (1.5 T SIE-
MENS/GE scanners) with atlas images obtained from Dataset
B (3.0 T SIEMENS/GE scanners) excluding that from the
same subject of the image of Dataset A under consideration,
and segmented each image of Dataset B with atlas images
obtained from Dataset A excluding that from the same sub-
ject of the image of Dataset B under consideration. It is worth
noting that images of Dataset A and Dataset B were acquired
with different scanners and from subjects of different diag-
nostic groups, including AD, MCI, and NC. We also seg-
mented each image of Dataset C (3.0 T SIEMENS scanner)
with atlas images obtained from Dataset A (1.5 T SIEMENS/
GE scanners) or Dataset B (3.0 T SIEMENS/GE scanners).

Validation of the Segmentation Performance

Based on Public Available Data

Besides MR images from studies of Alzheimer’s disease,
we also validated our method based on a publicly avail-
able dataset of nonepileptic subjects and epilepsy patients
[Jafari-Khouzani et al., 2011]. Using the training data of 25
subjects as atlases, we obtained segmentation results of the
testing data using our method, LWGU, LWINV, and NLP
with the same parameters used in the previous experi-
ments. As these images have anisotropic spatial resolution,
we first interpolated the voxel size to 1 3 1 3 1 mm3 before
segmentation. Then, after the segmentation, we interpo-
lated the image back to its original resolution for evaluat-
ing the segmentation performance. The performance of
these methods was evaluated by the dataset provider
based on 11 metrics and compared with two algorithms:
Brain Parser [Tu et al., 2008] and a multi-atlas based seg-
mentation method [Aljabar et al., 2007].

Evaluation Metrics

The segmentation performance of each method was eval-
uated using leave-one-out cross-validation. We adopted the
metrics used in [Jafari-Khouzani et al., 2011] except
“Specificity” due to the reason that it varies with the size of
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background. Given manual segmentation label E and the
automated segmentation result F, these metrics can be cal-
culated as:

1. Dice Index 52 V E\Fð Þ
V Eð Þ1V Fð Þ,

2. Jaccard Index 5
V E\Fð Þ
V E[Fð Þ,

3. Precision 5
V E\Fð Þ

V Fð Þ ,

4. Recall 5
V E\Fð Þ

V Eð Þ ,
5. Relative volume Difference : RVD 5

V Eð Þ2V Fð Þ
V Eð Þ ,

6. Mean Distance : MD 5mean e2BE min f2BFd e; fð Þ
� �

,
7. Hausdorff Distance: HD 5max H E;Fð Þ;H F;Eð Þð Þ,

where H E;Fð Þ5max e2BE min f2BFd e; fð Þ
� �

,
8. Hausdorff 95 Distance (HD95) is similar to Haus-

dorff Distance, except that 5% data points with the
largest distance are removed before the calculation,

9. Average Symmetric Surface Distance: ASSD5

mean e2BE min f2BFd e; fð Þ
� �

1mean f2BF min e2BEd e; fð Þð Þ
� �
=2,

10. Root Mean Square Distance: RMSD 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

E1D2
F

q
=

card BEf g1card BFf gð Þ.

In above metrics, BE denotes boundary voxels of the
segmentation E;BF denotes boundary voxels of the seg-
mentation F, d �; �ð Þ is the Euclidian distance between two
points, D2

E5
P

e2BEmin f2BFd2 e; fð Þ; D2
F5
P

f2BFmin e2BEd2

e; fð Þ; card �f g is the cardinality of a set, and V Xð Þ is the
volume of segmentation X.

The first four metrics have been widely used in image
segmentation studies and they are related to each other.
The relative volume difference metric can reveal the seg-

mentation method’s capability for detecting volume
changes, although it does not directly measure the overlap
between segmentation labels. The last five metrics, meas-
uring surface distance between segmentation results, char-
acterize the boundary difference.

Hippocampal Volumetry for Alzheimer’s Disease

A volumetric analysis was carried out to test the capacity
of each method for capturing the volume difference among
NC, MCI, and AD, based on the available 3.0 T images in
Dataset B and Dataset C. Based on the segmentation results,
each subject’s hippocampal volumes were computed and
normalized by its total intracranial volume (TIV) estimated
by VBM8 (http://dbm.neuro.uni-jena.de/vbm/download/
). In particular, each subject’s hippocampal volume was
divided by its TIV and then multiplied by mean of TIVs of
all subjects of Dataset B and Dataset C. We also performed
two sample t tests, computed standardized effect sizes
(Cohen’s d), and estimated sample size of each group for
different methods to detect a difference in total hippocam-
pal volumes (left 1 right) between NC group and MCI
group, as well as between NC group and AD group. For
the sample size estimation, Type I error rate was set to 0.05,
and power was set to 0.8 [Eng, 2003].

RESULTS

Initial Segmentation With Probabilistic Voting

The experiment results revealed that voxels labeled by
the probabilistic voting [Eq. (3)] as either hippocampus

Figure 3.

The initial segmentation result of a randomly selected test image

based on the probabilistic voting. The first row shows three slices

of the test image with manual segmentation label. The probabilis-

tic voting results are shown in the second row and the color bar

indicates the probability of a voxel belonging to the hippocampus.

The voxels belonging to the hippocampus or not with 100% cer-

tainty (probability value is 1: red or 0: blue) are overlaid on the

test image in the third row. First column: horizontal; second col-

umn: sagittal; third column: coronal. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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(11) or background (21) with 100% certainty were cor-
rectly segmented with a correct rate close to 100%. On
average, only one voxel labeled with 100% certainty was
misclassified in each image in Datasets A, B, and C. Figure
3 shows the initial segmentation result on one randomly
selected test image. Therefore, our algorithm can focus on
voxels labeled by the probabilistic voting with probability
values greater than 0 and smaller than 1. In particular,
about 98% of the background and 20% of the foreground
voxels were labeled with 100% certainty for subjects of
Dataset A within the bounding box of 44 3 63 3 64 of one
side of the hippocampus.

Parameter Tuning

Figure 4 shows average Dice index values of segmenta-
tion results of the right hippocampus with r varying from
0 to 3. For the SVM based segmentation, the segmentation
performance improved first as the number of training sam-
ples K increased and reached its maximal when K was
400, then the performance degraded if K was greater than

400. The optimal value of r was 1 and the optimal value
for K was 400. The segmentation performance improve-
ment with the increase of the number of training samples
(<400) might be due to the relieved curse of dimensional-
ity. However, the segmentation performance degraded if
too many samples, e.g., 500 samples, were used in the
SVM training, indicating that noisy training samples
(located far away from the voxel considered) might be
involved in the classifier training. The segmentation per-
formance when r50 was worse than when r5 1; 2f g, possi-
bly due to that the limited training samples might not able
to provide sufficiently discriminative information for
building robust classifiers. The segmentation performance
degraded as r varying from 1 to 3, indicating that irrele-
vant samples may have been used in the classifier training
when larger searching radius r was used.

Similar to the SVM classifier based segmentation, the
kNN classifier based segmentation performance improved
and then degraded with the increase of k, the number of
nearest neighbors used in the classification. The segmenta-
tion performance degraded as r varying from 1 to 3. How-
ever, the segmentation performance when r50 was better
than when r5 2; 3f g. The best Dice index was 0.877,
achieved with 150 nearest neighbors and r51. Overall, the
segmenation performance of kNN classifiers was worse
than that of SVM classifiers, suggesting that the sophisti-
cated SVM classifiers should be used in the segmentation.

Feature Selection Analysis

The frequency of features used in the segmentation is
shown in Figure 5. On average, about 7% features were
selected for the segmentation. These results indicated that
both intensity information and filtering outputs played
important roles in the segmentation. The top ten most fre-
quently selected features are summarized in Table II.

Comparison With State-of-the-Art

Label Fusion Methods

Figures 6 to 8 show box plots of segmentation perform-
ance measures of majority voting, STAPLE, LWGU, LWINV,
NLP, as well as LLL, based on Datasets A, B, and C, respec-
tively. The mean values of the segmentation performance
measures and P values of single-sided paired t tests for com-
paring LLL with others are reported in Tables III to V. All
the results demonstrated that the proposed method per-
formed consistently better than other label fusion methods.

Hippocampal volume differences between results of the
manual segmentation and automatic segmentation are
shown in Figure 9 and Table VI. Pearson correlation coeffi-
cients between hippocampal volumes estimated by the
manual segmentation and by different methods are also
reported in Table VI. These results demonstrated that our
proposed method could better estimate the hippocampal
volume, although small volume differences do not neces-
sarily mean accurate segmentation results. For visual

Figure 4.

The average Dice index values of segmentation results of the

right hippocampus for dataset A with different numbers of train-

ing samples and r varying from 0 to 3. Top: SVM classifier based

segmentation results. Bottom: kNN classifier based segmenta-

tion results. For the SVM classifier based segmentation, all avail-

able training samples (20 in total) were used without selection

when r 5 0. For the kNN classifier based segmentation, all avail-

able training samples were used. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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inspection, Figure 10 shows segmentation results of subjects
randomly selected from each dataset.

The performance of STAPLE was relatively poor, as sim-
ilarly reported in other atlas-based segmentation studies

[Artaechevarria et al., 2009; Khan et al., 2011; Langerak
et al., 2010]. In our experiment, STAPLE had the worst
performance evaluated by most of the performance
metrics, except recall index and mean distance. The visual
inspection and volume difference information revealed
that STAPLE was prone to generating segmentation results
larger than the manual segmentation results.

The overall performance of majority voting was better
than STAPLE. Particularly, majority voting had a higher
precision index and a lower recall index, indicating the
hippocampal segmentation volume of this method was
smaller than that of the manual segmentation compared
with other methods, consistent with the results (negative
RVD) reported in Table VI.

LWGU and LWINV had similar performance, better
than both STAPLE and majority voting. This finding was
consistent with results reported in [Artaechevarria et al.,
2009; Sabuncu et al., 2010], and further justified the effec-
tiveness of spatially adaptive image similarity measures
for characterizing the image registration accuracy in multi-

Figure 5.

Frequency of features used in the segmentation. (1) One ran-

domly selected image with the hippocampus boundary voxels

shown in different colors. (2) Features selected in the segmenta-

tion. Each row indexed by the color bar shown at the left cor-

responds to the boundary voxel in the same color shown in (1).

The x-axis is the feature index (1–27: intensity features in the

neighborhood of 33333, 1–125: intensity features in the neigh-

borhood of 53535, 1:343: intensity features in the neighbor-

hood of 73737, 344–379: filtering outputs). (3) Frequency of

features selected for the segmentation of the image shown

in (1). (4) Mean of frequencies of features selected for the seg-

mentation of images of dataset A. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

TABLE II. Top 10 most frequently selected features on

average for the segmentation of dataset A

Rank Feature type Parameter

1 SOD u 5 3 p=4, � 5 p=2
2 SOD u 5 p=2, � 5 0
3 SOD u 5 p=4, � 5 p=2
4 Range filter 7-neighbor
5 SOD u 5 p=2, � 5 p=2
6 SOD u 5 3p=4, � 5 p=4
7 Laplacian filter 26-neighbor
8 SOD u 5 0, � 5 p=2
9 SOD u 5 p=2, � 5 p=4
10 Intensity [4, 3, 5]
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atlas based image segmentation. NLP performed better
than LWGU and LWINV, providing supportive evidence
that better fusion performance can be obtained by relaxing
the one-to-one correspondence constrains.

For all the datasets, the proposed method achieved the
best overall performance. In particular, our method had
the best value on most metrics, including Dice, Jaccard,
MD, ASSD, and RMSD, confirmed by paired single-sided t
test as summarized in Tables III, V. The Recall index of
our method was just lower than STAPLE’s, indicating that
our method was able to generate segmentation results that
better covered the foreground region of the manual seg-
mentation. For most of the metrics, our method had fewer
outliers compared with other methods, indicating that our
method might be more robust than other methods. Our
method produced segmentation volumes with the least
difference from the manual segmentation results for most

datasets, except for the left hippocampus of Dataset A, as
indicated by the results shown in Figure 9 and Table VI.
It is worth noting that we presented measures of both
RVD and absolute value of RVD. RVD itself contains
directional information of the volume difference, and its
absolute value reflects the absolute difference.

Validation of the Segmentation Performance

Across Different Datasets

As shown in Table VII, for images obtained from ADNI,
i.e., Dataset A and Dataset B, acquired with scanners of
different makers and different field strengths, our method
have achieved robust segmentation performance. How-
ever, the segmentation performance of our method for
images of Dataset C with atlases obtained from Dataset A
or Dataset B was worse than that obtained with atlases

Figure 6.

Box plots of the results for the dataset A. On each box, the central mark is the median, and

edges of the box are the 25th and 75th percentiles. Whiskers extend from each end of the box

to the adjacent values in the dataset and the extreme values within 1 interquartile range from

the ends of the box. Outliers are data with values beyond the ends of the whiskers. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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obtained from Dataset C. Such a performance difference
might be caused by different imaging protocols used for
image acquisition and different ethnic groups of the sub-
jects. The images of ADNI were acquired with a standard
protocol at different imaging sites and geometric distortion
of images were corrected. However, the images of Dataset
C were acquired without correction of geometric distor-
tion. The difference between with and without geometric
distortion correction and the difference of ethnic groups
might make the image registration difficult.

Validation on Public Available Data of Epilepsy

Patients and Normal Subjects

Table VIII shows performance of the segmentation
methods evaluated based on the publicly available dataset
of epilepsy patients and normal subjects. Based on the

published results [Jafari-Khouzani et al., 2011], our method
performed much better than the supervised learning
method [Tu et al., 2008] and the multi-atlas-based segmen-
tation method [Aljabar et al., 2007]. Results of statistical
tests demonstrated that our method was statistically better
than three other methods (LWGU, LWINV, NLP) for 6 of
10 metrics. The degree of performance improvement
achieved by our method over LWGU and LWINV was simi-
lar to those reported in [Artaechevarria et al., 2009; Khan
et al., 2011]. However, the improvement was statistically sig-
nificant as indicated by P values of paired-tests for compar-
ing LLL with LWGU, LWINV, and NLP. These results also
indicated that the segmentation methods performed better
for images with isotropic voxels than those with highly ani-
sotropic voxels, such as those in this public dataset (20 1.5 T
images with voxel size 0.78 3 0.78 3 2.00 mm3, five 3.0 T
images with voxel size 0.39 3 0.39 3 2.00 mm3).

Figure 7.

Box plots of the results for the dataset B. On each box, the central mark is the median, and

edges of the box are the 25th and 75th percentiles. Whiskers extend from each end of the box

to the adjacent values in the dataset and the extreme values within 1 interquartile range from

the ends of the box. Outliers are data with values beyond the ends of the whiskers. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Hippocampal Volumetry

The distributions of hippocampal volumes estimated
from the segmentation results of all 3.0 T images are
shown in Figure 11, and group means and standard var-
iances of NC, MCI, and AD are summarized in Table IX.
These results demonstrated that the mean volumes of seg-
mentation results produced by our method were the clos-
est to those obtained by manual segmentation for NC
group. The segmentation results produced by the auto-
matic methods had smaller variance than those produced
by the manual segmentation as indicated by the standard
deviations of volumes estimated, suggesting that auto-
matic methods could achieve segmentation results with
better consistency. The t test results confirmed the finding
that the hippocampal volume is a promising biomarker for
Alzheimer’s disease [Morra et al., 2009a; Schuff et al.,

2009; Wolz et al., 2010b]. Our method could even detect a
statistically significant difference between NC and MCI
with a P value smaller than the manual segmentation’s.
Such findings were also confirmed by the effect sizes that
characterize the standard mean volume difference between
NC and its counterparts. As shown in Table IX, our
method had the largest effect size and the smallest sample
size of all automatic methods.

Effect of the Number of Atlases in Segmentation

In all above experiments, 20 atlases were used for seg-
menting the target image. To investigate how the number
of atlases affects the segmentation performance, the seg-
mentation performance associated with different numbers
of atlases was evaluated for right hippocampus based on

Figure 8.

Box plots of the results for the dataset C. On each box, the central mark is the median, and

edges of the box are the 25th and 75th percentiles. Whiskers extend from each end of the box

to the adjacent values in the dataset and the extreme values within 1 interquartile range from

the ends of the box. Outliers are data with values beyond the ends of the whiskers. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Dataset A. As shown in Figure 12, all the segmentation
methods under study shared a similar pattern, i.e., their
performance measured by a leave-one-out validation grad-
ually improved with the increase of the number of atlases
used in segmentation. For all the methods, an atlas selec-

tion strategy based on NMI similarity metric was used to
select atlases [Aljabar et al., 2009; Collins and Pruessner,
2010; Leung et al., 2011; Wolz et al., 2010a; Wu et al.,
2007]. Since LWGU and LWINV had similar performance,
only LWGU was performed in this experiment.

TABLE III. Results of dataset A: Means of the metrics and P values of paired-tests comparing different methods

with LLL method for both left and right hippocampus

MV
P value (L/R)

STAPLE
P value (L/R)

LWGU
P value (L/R)

LWINV
P value (L/R)

NLP
P value (L/R) LLL

Dice (L/R) 0.860/0.868;
3.4e-6/5.2e-10

0.802/0.824;
5.2e-7/1.1e-6

0.872/0.881;
1.7e-5/4.5e-6

0.860/0.886;
1.9e-2/1.3e-3

0.882/0.888;
3.3e-2/4.8e-2

0.887/0.894

Jaccard (L/R) 0.755/0.767;
1.6e-6/5.8e-10

0.677/0.707;
1.1e-7/3.0e-7

0.775/0.789;
1.4e-5/4.7e-6

0.760/0.796;
1.3e-2/1.1e-3

0.789/0.799;
3.7e-2/4.8e-2

0.797/0.809

Precision (L/R) 0.894/0.900;
2.7e-1/2.3e-1

0.694/0.724;
1.2e-12/2.6e-12

0.864/0.898;
4.2e-2/2.9e-2

0.897/0.908;
3.5e-1/9.7e-1

0.898/0.899;
3.2e-1/3.9e-2

0.902/0.908

Recall (L/R) 0.834/0.843;
1.3e-7/3.9e-8

0.971/0.970;
1.0/1.0

0.863/0.876;
2.1e-4/3.5e-3

0.853/0.860;
1.0e-7/1.8e-7

0.870/0.880;
8.5e-3/9.7e-2

0.875/0.884

HD (mm) (L/R) 3.930/3.750;
7.8e-1/1.6e-4

4.100/3.990;
4.0e-1/1.2e-6

4.890/4.870;
5.5e-2/1.3e-9

3.700/3.730;
6.4e-1/7.0e-4

3.400/3.145;
9.2e-1/3.9e-2

3.610/2.901

HD95 (mm) (L/R) 1.820/1.780;
3.1e-9/6.3e-11

1.930/1.710;
3.7e-4/9.2e-4

2.220/2.300;
2.4e-15/7.2e-16

1.890/1.800;
1.5e-11/2.5e-10

1.187/1.097;
4.2e-2/2.0e-1

1.097/1.083

MD (mm) (L/R) 0.340/0.320;
2.4e-3/2.9e-6

0.470/0.440;
4.8e-11/1.0e-16

0.420/0.410;
2.7e-6/5.1e-10

0.390/0.370;
3.7e-5/3.9e-8

0.271/0.219;
7.2e-3/2.4e-2

0.280/0.264

ASSD (mm) (L/R) 0.330/0.290;
5.4e-5/1.4e-6

0.520/0.470;
2.6e-7/2.4e-7

0.410/0.390;
7.7e-11/4.8e-15

0.370/0.350;
5.8e-8/8.7e-12

0.300/0.250;
6.3e-3/2.4e-2

0.252/0.235

RMSD (mm) (L/R) 0.620/0.630;
4.7e-1/1.4e-6

0.910/0.840;
1.8e-3/1.1e-6

0.710/0.690;
1.0e-1/4.8e-9

0.661/0.620;
6.2e-3/2.7e-5

0.650/0.538;
8.3e-3/8.0e-3

0.542/0.514

Bold: value of LLL method is significantly (P< 0.05) better than all other methods.

TABLE IV. Results of dataset B: Means of the metrics and P values of paired-tests comparing the different methods

with LLL method for both side of the hippocampus

MV P value
(L/R)

STAPLE
P value (L/R)

LWGU
P value (L/R)

LWINV
P value (L/R)

NLP
P value (L/R) LLL

Dice (L/R) 0.872/0.876;
9.1e-11/4.2e-13

0.830/0.836;
5.6e-7/9.0e-8

0.887/0.892;
5.5e-9/5.2e-10

0.891/0.896;
1.1e-7/1.5e-8

0.898/0.902;
8.6e-6/5.1e-5

0.907/0.911

Jaccard (L/R) 0.774/0.780;
2.6e-11/3.2e-13

0.716/0.724;
1.3e-7/1.9e-8

0.797/0.805;
2.6e-9/5.0e-10

0.808/0.819;
2.2e-5/2.8e-3

0.816/0.822;
8.5e-6/5.2e-5

0.830/0.838

Precision (L/R) 0.898/0.898;
9.5e-4/2.0e-3

0.737/0.743;
1.1e-11/1.1e-12

0.912/0.901;
5.7e-3/4.1e-7

0.915/0.915;
2.3e-1/5.5e-1

0.911/0.908;
1.9e-3/6.5e-4

0.918/0.917

Recall (L/R) 0.854/0.861;
2.5e-7/4.4e-9

0.967/0.969;
1.0/1.0

0.892/0.889;
1.9e-5/6.3e-9

0.865/0.873;
8.4e-9/2.1e-10

0.890/0.899;
5.1e-6/2.5e-4

0.899/0.908

HD (mm) (L/R) 3.257/3.347;
3.6e-2/1.8e-2

4.111/3.711;
4.9e-5/2.9e-4

3.900/3.631;
1.3e-7/1.6e-3

3.202/3.130;
4.5e-2/1.7e-1

3.004/3.062;
3.7e-1/1.2e-1

2.812/0.955

HD95 (mm) (L/R) 1.300/1.389;
3.7e-3/3.7e-5

1.928/1.763;
2.1e-4/3.4e-4

1.618/1.573;
3.4e-8/3.2e-7

1.320/1.360;
1.1e-3/4.2e-4

1.132/1.069;
3.0e-2/2.9e-1

1.083/1.041

MD (mm) (L/R) 0.336/0.333;
3.2e-8/2.6e-8

0.342/0.345;
2.7e-13/1.2e-12

0.457/0.438;
3.2e-12/4.7e-12

0.370/0.340;
9.8e-9/8.2e-8

0.198/0.193;
8.6e-5/1.6e-4

0.229/0.214

ASSD (mm) (L/R) 0.291/0.287;
6.6e-10/4.0e-11

0.457/0.435;
4.2e-7/1.9e-7

0.358/0.343;
9.6e-14/6.7e-14

0.330/0.320;
1.2e-11/4.7e-12

0.226/0.217;
9.5e-5/9.2e-5

0.204/0.198

RMSD (mm) (L/R) 0.593/0.600;
7.3e-9/2.1e-7

0.821/0.778;
3.4e-6/3.5e-6

0.688/0.669;
1.0e-12/6.7e-10

0.570/0.600;
1.1e-5/2.3e-6

0.509/0.499;
1.4e-4/6.1e-4

0.478/0.474

Bold: value of LLL method is significantly (P< 0.05) better than all other methods.
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TABLE V. Results of dataset C: Means of the metrics and P values of paired-tests comparing the different methods

with LLL method for both side of the hippocampus

MV P value
(L/R)

STAPLE
P value (L/R)

LWGU
P value (L/R)

LWINV
P value (L/R)

NLP
P value (L/R) LLL

Dice (L/R) 0.891/0.888;
1.5e-14/3.0e-4

0.860/0.853;
9.2e-16/2.2e-8

0.897/0.891;
3.7e-10/2.1e-10

0.899/0.900;
4.3e-10/1.3e-2

0.902/0.895;
3.2e-6/1.4e-5

0.908/0.907

Jaccard (L/R) 0.804/0.800;
5.9e-15/2.8e-5

0.757/0.748;
1.4e-16/1.9e-9

0.814/0.804;
1.7e-10/2.6e-11

0.817/0.819;
2.0e-10/6.7e-3

0.821/0.811;
2.5e-6/2.9e-6

0.833/0.832

Precision (L/R) 0.910/0.910;
1.0e-4/6.3e-5

0.778/0.770;
5.4e-30/5.0e-22

0.917/0.924;
9.3e-1/4.5e-1

0.917/0.923;
9.1e-1/2.1e-1

0.906/0.907;
2.1e-9/4.5e-10

0.915/0.926

Recall (L/R) 0.875/0.870;
6.3e-14/2.2e-3

0.968/0.966;
1.0/1.0

0.884/0.880;
2.3e-15/5.9e-2

0.881/0.865;
2.1e-14/3.5e-13

0.900/0.886;
8.7e-3/1.6e-2

0.904/0.892

HD (mm) (L/R) 3.035/2.986;
1.4e-4/1.9e-1

3.551/3.635;
3.5e-6/3.1e-6

2.950/3.040;
5.5e-2/9.6e-2

2.960/3.070;
2.2e-3/2.0e-1

3.000/3.174;
1.2e-2/5.9e-3

2.850/2.962

HD95 (mm) (L/R) 1.159/1.231;
6.6e-3/5.0e-2

1.430/1.579;
4.2e-7/3.0e-5

1.147/1.210;
8.1e-2/3.6e-2

1.135/1.170;
2.7e-2/3.7e-1

1.084/1.183;
3.8e-1/1.5e-2

1.068/1.142

MD (mm) (L/R) 0.287/0.310;
5.1e-9/1.1e-8

0.302/0.333;
4.6e-19/7.7e-12

0.240/0.270;
2.3e-3/6.8e-6

0.254/0.270;
1.7e-5/3.2e-3

0.213/0.235;
1.3e-6/3.8e-7

0.228/0.263

ASSD (mm) (L/R) 0.259/0.280;
8.1e-15/7.9e-4

0.370/0.416;
1.2e-17/7.5e-10

0.228/0.250;
6.9e-3/1.2e-3

0.235/0.250;
5.9e-9/4.9e-2

0.228/0.258;
1.3e-5/3.0e-5

0.213/0.233

RMSD (mm) (L/R) 0.547/0.574;
6.6e-14/5.9e-4

0.676/0.735;
6.6e-15/6.1e-9

0.507/0.526;
4.6e-2/7.9e-2

0.520/0.536;
3.1e-9/1.9e-2

0.509/0.546;
1.2e-5/1.5e-5

0.489/0.513

Bold: value of LLL method is significantly (P< 0.05) better than all other methods.

Figure 9.

Relative volume differences (RVD) (first row) and absolute value

of RVD (ARVD) (second row) between the segmentation results

of automatic methods and the manual label on the three data-

sets. Figures at the right side are the zoomed in version of fig-

ures at the left side. On each box, the central mark is the

median, and edges of the box are the 25th and 75th percentiles.

Whiskers extend from each end of the box to the adjacent val-

ues in the dataset and the extreme values within 1 times the

interquartile range from the ends of the box. Outliers are data

with values beyond the ends of the whiskers. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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DISCUSSION AND CONCLUSION

In this study, we propose a local label learning (LLL)
strategy for multi-atlas based image segmentation. Instead
of explicitly defining a weighting model to fuse the atlas
labels, we utilize a machine learning method to build
voxel-wise classifiers based on image appearance and tex-
ture information. To get a robust classifier that generalizes
well for each target voxel, we adopt a local patch strategy
to get a training set with abundant appearance and texture
information on which an L1-regularized SVM classifier is
built in conjunction with a kNN training sample selection
strategy.

Our method has the following novelties. First, an L1-
regularized supervised learning method is utilized to learn
the relationship between the segmentation label and image
appearance/texture for each voxel. The supervised learn-
ing method can take rich information as input for learning
a mapping from images to the segmentation label, and the
adopted L1 SVM can handle the potential redundant infor-
mation of image features. Besides the feature extraction
method adopted in our method, other sophisticated fea-
ture extraction techniques can also be adopted in this
framework [Dunn and Higgins, 1995]. Second, a local
patch strategy is used to get a training set for each voxel
to be segmented. Utilizing such a strategy to get the train-
ing set not only increases the number of training samples,
but also minimizes the partial volume effect due to imag-
ing resolution and the adverse effect of image registration
errors. Finally, the kNN strategy based SVM classification

is utilized to get a balanced training dataset. The kNN
strategy has been demonstrated successful for learning
problems with unbalanced training samples [Zhang et al.,
2006].

The comparison results have demonstrated that our
method could obtain better performance for segmenting
images with different spatial resolutions than alternative
state-of-the-art methods. It is worth noting that a direct
comparison of results across publications is difficult and
can be affected by several factors, such as the segmenta-
tion protocol, the imaging protocol, and the patient popu-
lation [Collins and Pruessner, 2010]. Since large labels
might lead to larger overlap values in segmentation evalu-
ation [Rohlfing et al., 2004a], multiple segmentation met-
rics should be used to comprehensively evaluate the
segmentation results. One summary of the hippocampal
segmentation performance reported in recent literature can
be found in Table X of [Wang et al., 2011a]. Most of the
recently published results had Dice index less than 0.9 and
the method combining multi-atlas-based segmentation
with an error correction step achieved the highest Dice
index of 0.908 [Wang et al., 2011a]. We got a similar per-
formance with the highest Dice index of 0.910 for images
from subjects of mixed diagnostic groups of Alzheimer’s
disease. Our results have also indicated that the hippo-
campus segmentation performance is hinged on the spatial
resolution of images to be segmented.

One recent study [Heckmann et al., 2011] has provided
a publicly available repository of anatomically segmented
brain images for the ADNI dataset. The segmentation

TABLE VI. Relative volume difference (RVD), absolute value of RVD (ARVD), and correlation between manual

segmentation and segmentation results obtained by automatic methods

Methods

MV;
RVD (%);

ARVD (%)

STAPLE
RVD (%);

ARVD (%)

LWGU;
RVD (%);

ARVD (%)

LWINV;
RVD (%);

ARVD (%)

NLP;
RVD (%);

ARVD (%)

LLL;
RVD (%);

ARVD (%)

Dataset A left
correlation

5.7 6 11.5;
10.7 6 6.8;

0.922

237.3 6 24.7;
37.3 6 24.7;

0.764

2.2 6 7.8;
6.7 6 4.5;

0.956

4.8 6 9.8;
9.2 6 5.5;

0.942

1.9 6 8.7;
7.5 6 4.6;

0.952

1.9 6 8.6;
7.1 6 5.1;

0.952
Dataset A right

correlation
6.0 6 12.6;
11.3 6 7.9;

0.897

245.1 6 31.1;
45.1 6 31.1;

0.716

22.2 6 19.5;
11.7 6 15.6;

0.795

4.3 6 10.8;
9.3 6 6.7;

0.924

2.8 6 9.7;
8.2 6 5.8;

0.931

2.1 6 9.1;
7.5 6 5.5;

0.940

Dataset B left
correlation

3.3 6 12.2;
10.5 6 6.8;

0.918

233.5 6 22.2;
33.5 6 22.2;

0.826

4.0 6 8.9;
8.1 6 5.3;

0.952

4.2 6 9.8;
8.9 6 5.7;

0.945

0.7 6 8.7;
6.7 6 5.4;

0.957

0.6 6 8.3;
6.3 6 5.3;

0.959

Dataset B Right
correlation

4.1 6 13.8;
11.5 6 8.5;

0.889

235.6 6 27.9;
35.6 6 27.9;

0.759

5.2 6 9.9;
9.4 6 5.8;

0.937

5.0 6 11.1;
10.0 6 6.8;

0.926

2.0 6 9.4;
7.7 6 5.5;

0.943

1.6 6 9.1;
7.4 6 5.3;

0.944

Dataset C left
correlation

4.0 6 8.7;
7.4 6 6.0;

0.923

227.8 6 19.9;
27.8 6 19.9;

0.803

4.4 6 7.5;
7.0 6 5.0;

0.945

6.0 6 8.7;
8.2 6 6.6;

0.914

2.1 6 8.4;
6.1 6 6.1;

0.923

3.3 6 8.6;
6.0 6 6.1;

0.947

Dataset C right
correlation

3.5 6 8.9;
7.8 6 5.5;

0.932

225.9 6 15.3;
25.9 6 15.3;

0.902

3.3 6 8.3;
7.3 6 5.1;

0.939

3.6 6 8.5;
7.5 6 5.3;

0.937

0.3 6 8.4;
6.5 6 5.2;

0.940

0.8 6 8.1;
6.3 6 5.0;

0.945

Highest Pearson correlation coefficients are shown in bold.
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results were also generated by a multi-atlas based segmen-
tation method [Heckemann et al., 2010]. Though hippo-
campal labels were available for these images, they were
obtained with a segmentation protocol different from ours.
We did not apply out method to the dataset with hippo-
campus labels provided by the study [Heckemann et al.,
2011] for following reasons. First, our method is not suita-
ble for segmenting hippocampus based on atlases labeled
without the hippocampal tail. Since the hippocampal main
body and tail have similar intensity information as shown
in Figure 13, our method, achieving segmentation based

Figure 10.

Hippocampal segmentation results obtained by different meth-

ods. One subject was randomly chosen from each dataset. For

each subject, the first row shows the segmentation results

produced by different methods, the second row demonstrates

their corresponding surface rendering results, and the differ-

ence between results of manual and automatic segmentation

methods was showed in the third row (red: manual segmenta-

tion results, green: automated segmentation results, blue: over-

lap between manual and automated segmentation results).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

TABLE VII. Segmentation performance of across

different datasets

Dice index values (L/R)

B!A(A!A) A ! B(B ! B)
0.891/0.898(0.887/0.894) 0.900/0.908(0.907/0.911)
A!C(C!C) B!C(C!C)
0.879/0.870(0.908/0.907) 0.882/0.875(0.908/0.907)

X!Y: images of dataset X were used as atlases to segment images
of dataset Y.
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on image intensity information, will generate results
including the hippocampal tail. Our method cannot auto-
matically cut the tail. Second, our method might not be
able to effectively handle label errors of atlas. As shown in
Figure 13, the segmentation results contained errors. Such
segmentation label errors also make the performance eval-
uation complicated.

One major issue of the multi-atlas based image segmen-
tation methods is their high computational cost, mainly
due to the image registration. To reduce the computation
cost of image registration, one can select a small number
of atlases [Aljabar et al., 2009]. As demonstrated in our

experiments, a small set of around 20 atlases could lead to
a stable segmentation performance. Recent studies have
proposed nonlocal patch-based image labeling strategies
with linear image registration based atlas alignment
[Coupe et al., 2011; Rousseau et al., 2011]. However, such
non-local search procedures may increase the computa-
tional cost due to the reason that the computational cost of
non-local searching in the label fusion step might be
higher than the computational cost of non-rigid image
registration, as pointed out in [Rousseau et al., 2011]. For
speeding up the image registration and subsequently the
image segmentation, it might be a good choice to use

TABLE VIII. Segmentation performance on the publicly available dataset of epilepsy patients and normal subjects

Methods Tu et al. [2008] Aljabar et al. [2007] LWGU; P value LWINV; P value NLP; P value LLL

Dice 0.64 6 0.06 0.75 6 0.07 0.828 6 0.031; 7.8e-4 0.828 6 0.031; 4.4e-4 0.827 6 0.030; 1.8e-7 0.831 6 0.030

Jaccard 0.47 6 0.06 0.60 6 0.07 0.709 6 0.043; 6.3e-4 0.709 6 0.043; 3.4e-4 0.707 6 0.042; 1.7e-7 0.714 6 0.042

Precision 0.50 6 0.08 0.77 6 0.07 0.797 6 0.053; 2.0e-4 0.797 6 0.053; 1.6e-4 0.795 6 0.053; 4.5e-7 0.802 6 0.053

Recall 0.92 6 0.06 0.74 6 0.10 0.868 6 0.039; 3.9e-1 0.867 6 0.039; 2.9e-1 0.866 6 0.039; 3.2e-2 0.868 6 0.039
HD (mm) 8.77 6 4.30 4.45 6 1.54 5.848 6 5.590; 1.2e-1 5.844 6 5.591; 1.4e-1 5.956 6 5.542; 7.9e-3 5.800 6 5.606;
HD95 (mm) 4.58 6 1.68 2.41 6 0.98 1.851 6 0.472; 9.5e-2 1.851 6 0.468; 6.3e-2 1.840 6 0.450; 3.5e-1 1.833 6 0.473;
MD (mm) 1.58 6 0.50 0.50 6 0.18 0.351 6 0.128; 7.8e-2 0.351 6 0.129; 5.9e-2 0.342 6 0.125; 9.8e-1 0.347 6 0.126
ASSD (mm) 1.33 6 0.33 0.55 6 0.27 0.339 6 0.095; 1.1e-3 0.340 6 0.096; 7.2e-4 0.340 6 0.094; 6.7e-5 0.333 6 0.093;
RMSD (mm) 1.88 6 0.54 0.95 6 0.39 0.691 6 0.165; 5.3e-3 0.691 6 0.164; 3.9e-3 0.690 6 0.160; 1.6e-3 0.681 6 0.161;
RVD (%) 94 6 37 24 6 15 9.7 6 11.1; 8.1e-4 9.7 6 11.1; 1.4e-3 9.8 6 11.1; 3.5e-4 9.0 6 11.0;
ARVD (%) / / 10.6 6 10.2; 8.8e-3 10.6 6 10.2; 1.2e-2 10.7 6 10.2; 6.7e-3 10.1 6 10.0

Means values with their standard deviations of the metrics are shown. Bold: value of LLL method is significantly (P< 0.05) better than
all other methods.

Figure 11.

Hippocampal volumes of subjects from three diagnostic groups. On each box, the central mark

is the median, and edges of the box are the 25th and 75th percentiles. Whiskers extend from

each end of the box to the adjacent values in the dataset and the extreme values within 1 inter-

quartile range from the ends of the box. Outliers are data with values beyond the ends of the

whiskers. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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graphics processing units (GPUs) [Huang et al., 2011; Sam-
ant et al., 2008; Sharp et al., 2007] since a GPU-based
image registration can achieve a speedup of 25 times for
atlas-based brain image segmentation [Han et al., 2009]. In
this study, we have implemented our algorithm using
Matlab. It took about 7 min to fuse labels for segmenting
one side of the hippocampi using single thread on a com-
putation workstation (Intel xeonx5667) with CPUs of
3.07 GHZ.

The proposed method is designed for problems with
two labels: foreground or background. However, it is
straightforward to use our method in segmentation prob-
lems with multiple structures by iteratively segmenting
one structure at a time. The method can also be extended
for segmentation problems with multiple structures by

replacing the two-class SVM classifiers with multi-class
classifiers, such as random forests [Breiman, 2001]. Fur-
thermore, if fuzzy label models such as those based on
distance transforms are used, our method can also be
extended by adopting regression techniques.

The proposed method could be further improved using
the following strategies. First, shape regularization can be
incorporated into the image segmentation framework.
In this study, we performed voxel-wise classification.
We expect that smoother labels could be obtained by
explicitly including shape constrains. Second, our algo-
rithm could be extended to handle multiple brain struc-
tures with a multi-class based supervised learning
strategy.
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NOTE ADDED TO PROOF

Due to a coding error in the authors’ program, image
features from the second order difference filters (SODs)
were not used in the experiments. We have corrected and
evaluated the algorithm’s segmentation performance on
datasets A, B, and C. The results presented in Tables III-V,
Table II, and Table VII were updated. The updated seg-
mentation accuracy measures were close to those

TABLE IX. Normalized hippocampal volume information of three diagnostic groups estimated by different meth-

ods, and two sample t-tests, effect sizes, and sample sizes for different methods to detect a difference in total hip-

pocampal volumes between NC group and MCI group, as well as between NC group and AD group

Methods

NC MCI AD

Volume
(mm3); left;

right

Volume
(mm3); left;

right

t-Test
between

MCI and NC
(P value)

Effect
size (d)

Sample
size

Volume
(mm3); left;

right

t-Test
between AD

and NC
(P value)

Effect
size (d)

Sample
size

Manual
segmentation

2,623 6 393;
2,826 6 450

2,266 6 484;
2,482 6 525

5.3e-3 0.79 25 2,044 6 586;
2,328 6 618

9.0e-5 1.07 14

MV 2,371 6 315;
2,574 6 366

2,088 6 343;
2,317 6 379

5.0e-3 0.79 25 2,078 6 474;
2,322 6 432

8.2e-3 0.70 32

STAPLE 3,114 6 343;
3,338 6 416

2,803 6 373;
3,087 6 399

6.2e-3 0.77 26 2,765 6 531;
3,177 6 447

1.8e-2 0.62 41

LWGU 2,417 6 340;
2,610 6 384

2,089 6 386;
2,322 6 435

3.8e-3 0.82 23 2,055 6 515;
2,290 6 492

2.8e-3 0.79 25

LWINV 2,397 6 332;
2,593 6 379

2,084 6 378;
2,297 6 427

3.6e-3 0.82 23 2,057 6 500;
2,235 6 451

1.3e-3 0.86 21

NLP 2,506 6 364;
2,704 6 403

2,173 6 407;
2,394 6 473

4.6e-3 0.80 24 2,103 6 566;
2,285 6 503

6.7e-4 0.91 19

LLL 2,523 6 369;
2,736 6 429

2,161 6 418;
2,399 6 473

2.8e-3 0.85 22 2,108 6 552;
2,304 6 499

5.3e-4 0.93 18

Figure 12.

Segmentation performance as a function of the number of

atlases used. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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presented in the paper. However, the top 10 most fre-
quently selected features were different, and some features
from Laplacian filters were replaced with features from

SODs since both SOD and Laplacian filters captured edge
information and played similar roles in the segmentation.

REFERENCES

Aljabar P, Heckeman R, Hammers A, Hajnal JV, Rueckert D
(2007): Classifier selection strategies for label fusion using large
atlas databases. Med Image Comput Comput Assist Interv
4791:523–531.

Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D
(2009): Multi-atlas based segmentation of brain images: Atlas
selection and its effect on accuracy. Neuroimage 46:726–738.

Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2008):
Effleient classifier generation and weighted voting for aflas-
based segmentation: Two small steps faster and closer to the
combination oracle. SPIE Med Imag 2008:6914.

Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009):
Combination strategies in multi-atlas image segmentation: Appli-
cation to brain MR data. IEEE Trans Image Process 28:1266–1277.

Ashburner J, Friston KJ (2005): Unified segmentation. Neuroimage
26:839–851.

Asman AJ, Landman BA (2011): Robust statistical label fusion
through consensus level, labeler accuracy, and truth estimation
(COLLATE). IEEE Trans Image Process 30:1779–1794.

Asman AJ, Landman BA (2012): Non-local STAPLE: An intensity-
driven multi-atlas rater model. Med Image Comput Comput
Assist Interv 15:426–434.

Avants BB, Epstein CL, Grossman M, Gee JC (2008): Symmetric
diffeomorphic image registration with cross-correlation: Evalu-
ating automated labeling of elderly and neurodegenerative
brain. Med Image Anal 12:26–41.

Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M,
Detre J, Gee JC (2010): The optimal template effect in hippocam-
pus studies of diseased populations. Neuroimage 49:2457–2466.

Bajcsy R, Lieberson R, Reivich M (1983): A computerized system
for the elastic matching of deformed radiographic images to
idealized atlas images. J Comput Assist Tomogr 7:618–625.

Breiman L (2001): Random forests. Mach Learn 45:5–32.
Collins DL, Holmes CJ, Peters TM, Evans AC (1995): Automatic 3-

D model-based neuroanatomical segmentation. Human Brain
Mapp 3:190–208.

Collins DL, Pruessner JC (2010): Towards accurate, automatic seg-
mentation of the hippocampus and amygdala from MRI by
augmenting ANIMAL with a template library and label fusion.
Neuroimage 52:1355–1366.

Collins DL, Zijdenbos AP, Baare WFC, Evans AC (1999): ANI-
MAL1INSECT: Improved cortical structure segmentation. Inf
Process Med Imaging 1613:210–223.

Coupe P, Manjon JV, Fonov V, Pruessner J, Robles M, Collins DL
(2011): Patch-based segmentation using expert priors: Applica-
tion to hippocampus and ventricle segmentation. Neuroimage
54:940–954.

Dunn D, Higgins WE (1995): Optimal Gabor filters for texture seg-
mentation. IEEE Trans Image Process 4:947–964.

Eng J (2003): Sample size estimation: How many individuals
should be studied? Radiology 227:309–313.

Fan RE, Chang KW, Hsieh CJ, Wang, XR, Lin CJ (2008): LIBLIN-
EAR: A library for large linear classification. J Mach Learn Res
9:1871–1874.

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C,
van der Kouwe A, Killiany R, Kennedy D, Klaveness S,

Figure 13.

Ten randomly selected images and their segmentation labels of

hippocampus obtained from the results provided by the study

[Heckemann et al., 2011]. Each row shows one image’s two sli-

ces and their corresponding segmentation labels. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r LLL for Hippocampus Segmentation r

r 2695 r



Montillo A, Makris N, Rosen B, Dale AM (2002): Whole brain
segmentation: Automated labeling of neuroanatomical structures
in the human brain. Neuron 33:341–355.

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F,
Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D,
Caviness V, Makris N, Rosen B, Dale AM (2004): Automatically
parcellating the human cerebral cortex. Cereb Cortex 14:11–22.

Gee JC, Reivich M, Bajcsy R (1993): Elastically deforming 3D atlas
to match anatomical brain images. J Comput Assist Tomogr
17:225–236.

Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson
WE, Jolesz FA, Black PM, Wells WM III (2001): An integrated
visualization system for surgical planning and guidance using
image fusion and an open MR. J Magn Reson Imaging 13:967–
975.

Hajnal JV, Xue H, Srinivasan L, Jiang SZ, Rutherford M, Edwards
AD, Rueckert D (2007): Automatic segmentation and reconstruc-
tion of the cortex from neonatal MRI. Neuroimage 38:461–477.

Han X, Fischl B (2007): Atlas renormalization for improved brain
MR image segmentation across scanner platforms. IEEE Trans
Med Imaging 26:479–486.

Han X, Hibbard LS, Willcut V (2009): GPU-accelerated, gradient-
free MI deformable registration for atlas-based MR brain
image segmentation. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshop,
Miami, FL, pp 141–148.

Hao Y, Liu J, Duan Y, Zhang X, Yu C, Jiang T, Fan Y (2012): Local
label learning (L3) for multi-atlas based segmentation SPIE
Med Imaging 2012:8314.

Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A
(2006): Automatic anatomical brain MRI segmentation combin-
ing label propagation and decision fusion. Neuroimage 33:115–
126.

Heckemann RA, Keihaninejad S, Aljabar P, Gray KR, Nielsen C,
Rueckert D, Hajnal JV, Hammers A (2011): Automatic mor-
phometry in Alzheimer’s disease and mild cognitive impair-
ment. Neuroimage 56:2024–2037.

Heckemann R, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV,
Hammers A (2010): Improving intersubject image registration
using tissue-class information benefits robustness and accuracy
of multi-atlas based anatomical segmentation. Neuroimage 51:
221–227.

Huang TY, Tang YW, Ju SY (2011): Accelerating image registra-
tion of MRI by GPU-based parallel computation. Magn Reson
Imaging 29:712–716.

Iosifescu DV, Shenton ME, Warfield SK, Kikinis R, Dengler J,
Jolesz FA, McCarley RW (1997): An automated registration
algorithm for measuring MRI subcortical brain structures.
Neuroimage 6:13–25.

Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van
Ginneken B (2009): Multi-atlas-based segmentation with local
decision fusion–Application to cardiac and aortic segmentation
in CT scans. IEEE Trans Med Imaging 28:1000–1010.

Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G,
Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale
AM, Felmlee JP, Gunter JL, Hill DLG, Killiany R, Schuff N,
Fox-Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G,
Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J,
Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G,
Glover G, Mugler J, Weiner MW, Study A (2008): The Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI): MRI methods.
J Magn Reson Imaging 27:685–691.

Jafari-Khouzani K, Elisevich KV, Patel S, Soltanian-Zadeh H
(2011): Dataset of magnetic resonance images of nonepileptic
subjects and temporal lobe epilepsy patients for validation of
hippocampal segmentation techniques. Neuroinformatics 9:
335–346.

Jia H, Yap PT, Shen D (2012): Iterative multi-atlas-based multi-
image segmentation with tree-based registration. Neuroimage
59:422–430.

Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A,
Gollub R, Kennedy D, Schmitt F, Brown G, MacFall J, Fischl B,
Dale A (2006): Reliability in multi-site structural MRI studies:
Effects of gradient non-linearity correction on phantom and
human data. Neuroimage 30:436–443.

Khan AR, Cherbuin N, Wen W, Anstey KJ, Sachdev P, Beg MF
(2011): Optimal weights for local multi-atlas fusion using super-
vised learning and dynamic information (SuperDyn): Validation
on hippocampus segmentation. Neuroimage 56:126–139.

Khan AR, Chung MK, Beg MF (2009): Robust atlas-based brain
segmentation using multi-structure confidence-weighted regis-
tration. Med Image Comput Comput Assist Interv 12:549–557.

Khan AR, Wang L, Beg MF (2008): FreeSurfer-initiated fully-
automated subcortical brain segmentation in MRI using large
deformation diffeomorphic metric mapping. Neuroimage 41:
735–746.

Kittler J, Hatef M, Duin RPW, Matas J (1998): On combining clas-
sifiers. IEEE Trans Pattern Anal Mach Intell 20:226–239.

Langerak TR, van der Heide UA, Kotte AN, Viergever MA, van
Vulpen M, Pluim JP (2010): Label fusion in atlas-based seg-
mentation using a selective and iterative method for perform-
ance level estimation (SIMPLE). IEEE Trans Image Process 29:
2000–2008.

Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC,
Ourselin S, Initia ADN (2011): Brain MAPS: An automated,
accurate and robust brain extraction technique using a tem-
plate library. Neuroimage 55:1091–1108.

Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ,
Macdonald K, Schuff N, Fox NC, Ourselin S (2010): Auto-
mated cross-sectional and longitudinal hippocampal volume
measurement in mild cognitive impairment and Alzheimer’s
disease. Neuroimage 51:1345–1359.

Leventon ME, Grimson WEL, Faugeras O (2000): Statistical shape
influence in geodesic active contours. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Volume 1, Hilton Head Island, SC, pp. 316–323.

Lotjonen JMP, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G,
Soininen H, Rueckert D, Initi ASDN (2010): Fast and robust
multi-atlas segmentation of brain magnetic resonance images.
Neuroimage 49:2352–2365.

Magnotta VA, Heckel D, Andreasen NC, Cizadlo T, Corson PW,
Ehrhardt JC, Yuh WT (1999): Measurement of brain structures
with artificial neural networks: Two- and three-dimensional
applications. Radiology 211:781–790.

Marroquin JL, Santana EA, Botello S (2003) Hidden Markov mea-
sure field models for image segmentation. IEEE Trans Pattern
Anal Mach Intell 25:1380–1387.

Mazziotta JC, Valentino D, Grafton S, Bookstein F, Pelizzari C,
Chen G, Toga AW (1991): Relating structure to function in
vivo with tomographic imaging. Proc Ciba Found Symp 163:
93–112.

Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C,
Madsen SK, Parikshak N, Toga AW, Jack CR, Schuff N,
Weiner MW, Thompson PM, Initi ASDN (2009a): Automated

r Hao et al. r

r 2696 r



mapping of hippocampal atrophy in 1-year repeat MRI data
from 490 subjects with Alzheimer’s disease, mild cognitive
impairment, and elderly controls. Neuroimage 45:S3–S15.

Morra JH, Tu Z, Apostolova LG, Green AE, Toga AW,
Thompson PM (2010): Comparison of AdaBoost and support
vector machines for detecting Alzheimer’s disease through
automated hippocampal segmentation. IEEE Trans Med Imag-
ing 29:30–43.

Morra JH, Tu ZW, Apostolova LG, Green AE, Avedissian C,
Madsen SK, Parikshak N, Hua X, Toga AW, Jack CR, Weiner
MW, Thompson PM (2009b): Validation of a fully automated
3D hippocampal segmentation method using subjects with
Alzheimer’s disease, mild cognitive impairment, and elderly
controls. Neuroimage 44:1439–1439.

Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tonnessen P,
Walhovd KB (2009): Heterogeneity in subcortical brain develop-
ment: A structural magnetic resonance imaging study of brain
maturation from 8 to 30 years. J Neurosci 29:11772–11782.

Pierson R, Corson PW, Sears LL, Alicata D, Magnotta V, Oleary
D, Andreasen NC (2002): Manual and semiautomated mea-
surement of cerebellar subregions on MR images. Neuroimage
17:61–76.

Pohl KM, Fisher J, Grimson WE, Kikinis R, Wells, W.M (2006a): A
Bayesian model for joint segmentation and registration. Neuro-
image 31:228–239.

Pohl KM, Fisher J, Shenton M, McCarley RW, Grimson WE,
Kikinis R, Wells WM (2006b): Logarithm odds maps for shape
representation. Med Image Comput Comput Assist Interv 9:
955–963.

Powell S, Magnotta VA, Johnson H, Jammalamadaka VK, Pierson
R, Andreasen NC (2008): Registration and machine learning-
based automated segmentation of subcortical and cerebellar
brain structures. Neuroimage 39:238–247.

Rohlfing T, Brandt R, Menzel R, Maurer CR Jr (2004a): Evaluation
of atlas selection strategies for atlas-based image segmentation
with application to confocal microscopy images of bee brains.
Neuroimage 21:1428–1442.

Rohlfing T, Maurer CR (2007): Shape-based averaging. IEEE Trans
Med Imaging 16:153–161.

Rohlfing T, Russakoff DB, Maurer CR Jr (2004b): Performance-
based classifier combination in atlas-based image segmentation
using expectation-maximization parameter estimation. IEEE
Trans Med Imaging 23:983–994.

Rousseau F, Habas PA, Studholme C (2011): A supervised patch-
based approach for human brain labeling. IEEE Trans Med
Imaging 30:1852–1862.

Sabuncu MR, Yeo BT, Van Leemput K, Fischl B, Golland, P(2010):
A generative model for image segmentation based on label
fusion. IEEE Trans Med Imaging 29:1714–1729.

Samant SS, Xia J, Muyan-Ozcelik P, Owens JD (2008): High perform-
ance computing for deformable image registration: Towards a
new paradigm in adaptive radiotherapy. Med Phys 35:3546–3553.

Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM,
Trojanowski JQ, Thompson PM, Jack CR, Weiner MW, Initi
ASDN (2009): MRI of hippocampal volume loss in early Alz-
heimers disease in relation to ApoE genotype and biomarkers.
Brain 132:1067–1077.

Sdika M (2010): Combining atlas based segmentation and intensity
classification with nearest neighbor transform and accuracy
weighted vote. Med Image Anal 14:219–226.

Sharp GC, Kandasamy N, Singh H, Folkert M (2007): GPU-based
streaming architectures for fast cone-beam CT image recon-

struction and demons deformable registration. Phys Med Biol
52:5771–5783.

Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method
for automatic correction of intensity nonuniformity in MRI
data. IEEE Trans Med Imaging 17:87–97.

Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002): Develop-
ment of cortical and subcortical brain structures in childhood
and adolescence: A structural MRI study. Dev Med Child Neu-
rol 44:4–16.

Spinks R, Magnotta VA, Andreasen NC, Albright KC, Ziebell S,
Nopoulos P, Cassell M (2002): Manual and automated mea-
surement of the whole thalamus and mediodorsal nucleus
using magnetic resonance imaging. Neuroimage 17:631–642.

Toriwaki J, Yoshida H (2009): Fundamentals of Three-Dimensional
Digital Image Processing. London: Springer.

Tu Z, Narr KL, Dollar P, Dinov I, Thompson PM, Toga AW
(2008): Brain anatomical structure segmentation by hybrid dis-
criminative/generative models. IEEE Trans Med Imaging 27:
495–508.

Tu Z, Toga AW (2007): Towards whole brain segmentation by a hybrid
model. Med Image Comput Comput Assist Interv 10:169–177.

Twining CJ, Cootes T, Marsland S, Petrovic V, Schestowitz R,
Taylor CJ (2005): A unified information-theoretic approach to
groupwise non-rigid registration and model building. Inf Pro-
cess Med Imaging 3565:1–14.

van Rikxoort EM, Isgum I, Arzhaeva Y, Staring M, Klein S,
Viergever MA, Pluim JPW, van Ginneken B (2010): Adaptive
local multi-atlas segmentation: Application to the heart and
the caudate nucleus. Med Image Anal 14:39–49.

Wang H, Das SR, Suh JW, Altinay M, Pluta J, Craige C, Avants B,
Yushkevich PA (2011a): A learning-based wrapper method to
correct systematic errors in automatic image segmentation:
Consistently improved performance in hippocampus, cortex
and brain segmentation. Neuroimage 55:968–985.

Wang H, Suh JW, Das S, Pluta J, Altinay M, Yushkevich P
(2011b): Regression-based label fusion for multi-atlas segmen-
tation. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Providence, RI, pp
1113–1120.

Warfield SK, Zou KH, Wells WM (2004): Simultaneous truth and
performance level estimation (STAPLE): An algorithm for the
validation of image segmentation. IEEE Trans Med Imaging
23:903–921.

Wolz R, Aljabar P, Hajnal JV, Hammers A, Rueckert D (2010a):
LEAP: Learning embeddings for atlas propagation. Neuro-
image 49:1316–1325.

Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A,
Lotjonen J, Rueckert D, Initi ASDN (2010b): Measurement of
hippocampal atrophy using 4D graph-cut segmentation: Appli-
cation to ADNI. Neuroimage 52:109–118.

Wu MJ, Rosano C, Lopez-Garcia P, Carter CS, Aizenstein HJ
(2007): Optimum template selection for atlas-based segmenta-
tion. Neuroimage 34:1612–1618.

Yeo BT, Sabuncu M., Desikan R, Fischl B, Golland P (2008): Effects
of registration regularization and atlas sharpness on segmenta-
tion accuracy. Med Image Anal 12:603–615.

Yuan GX, Chang KW, Hsieh CJ, Lin C.J (2010): A comparison of
optimization methods and software for large-scale L1-regular-
ized linear classification. J Mach Learn Res 11:3183–3234.

Zhang H, Berg AC, Maire M, Malik J (2006): SVM-KNN: Discrimi-
native nearest neighbor classification for visual category recog-
nition. Comput Vis Pattern Recognit 2006:2126–2136.

r LLL for Hippocampus Segmentation r

r 2697 r


	l
	l
	l

